

Abstract Summary

Title: Rumen-protected choline (RPC) reduces hepatic triacylglycerol content by increasing hepatic triglyceride-rich lipoprotein secretion

Authors: U. Arshad, A. Husnain, M.B. Poindexter, R. Zimpel, and J.E.P. Santos *University of Florida, Gainesville, FL*

Objective: Determine the effect of supplementing sources of RPC with a low (28.8%) or high (60.0%) concentration of choline chloride (CC) on hepatic lipid metabolism.

Treatments:

- Holstein cows (n=33) were blocked by body condition and fed the following treatments for 14 days:
 - \circ 0 g/d RPC (**CON**)
 - o 25.8 g/d of choline ion from RPC containing 28.8% CC
 - o 25.8 g/d of choline ion from RPC containing 60.0% CC
- Feed was restricted to 50% of the net energy for lactation in the last 9 days
- Intake of metabolizable methionine was maintained at 20 g/d for the 14-day experiment

Results:

- Supplementing RPC:
 - a. reduced hepatic TAG content
 - b. increased area under the curve for serum TAG (indicating increased hepatic secretion of TAG-rich lipoproteins)
 - c. increased the mRNA expression of genes associated with autophagy (ATG3) and assembly of lipoproteins (MTTP)
 - d. decreased the expression of a gene associated with hepatic lipidosis (*PLIN2*)

Take Home Message: This research illustrates the basic science that feeding RPC positively influences liver health through mRNA expression and increased hepatic VLDL secretion.

Full Abstract

Rumen-protected choline (RPC) reduces hepatic triacylglycerol content by increasing hepatic triglyceride-rich lipoprotein secretion

U. Arshad, A. Husnain, M.B. Poindexter, R. Zimpel, and J.E.P. Santos *University of Florida, Gainesville, FL*

Objectives were to determine the effect of supplementing sources of RPC with a low (L, 28.8%) or high (H, 60.0%) concentration of choline chloride on hepatic lipid metabolism. Holstein cows at 234±2.2 d of gestation were blocked by body condition (3.79±0.50) and assigned to receive 0 (CON) or 25.8 g/d of choline ion either as L25.8 or H25.8 (n=33; 11/treatment). Treatments were fed for 14 d, with cows feed-restricted to 50% of the net energy for lactation required in the last 9 d of the experiment. Intake of metabolizable methionine was maintained at 20 g/d for the 14-d experiment with rumen-protected methionine. Hepatic tissue was collected on d 13 to determine composition and mRNA expression. On d 14, cows received intravenously a 10% solution of tyloxapol at 120 mg/kg of body weight to block very-low density lipoprotein (VLDL) catabolism. Blood was sampled sequentially for 720 min and the area under the curve (AUC) of triacylglycerol (TAG) was calculated. Lymph was sampled 6 h post-infusion. Data were analyzed using mixedeffects models, and orthogonal contrasts were used to evaluate the effect of supplementing RPC (CON vs. ½ L25.8 + ½ H25.8) and source of RPC (L25.8 vs. H25.8). Supplementing RPC reduced hepatic TAG content and increased AUC for serum TAG indicating increased hepatic secretion of TAG-rich lipoproteins. Supplementing RPC increased the mRNA expression of genes associated with autophagy (ATG3) and assembly of lipoproteins (MTTP), whereas it decreased the expression of a gene associated with hepatic lipidosis (PLIN2). Reduction in hepatic TAG in cows supplemented with RPC is mediated by increased hepatic TAG secretion.

Responses to treatments during feed restriction

Responses to treatments during feed restriction				
Item	CON	L25.8	H25.8	SE
Liver, as is %				
TAG^*	8.3	4.0	4.8	0.4
Glycogen* [‡]	1.77	3.40	3.96	0.15
AUCTAG,* mg/dL/min	21,747	32,323	28,699	3,706
Lymph				
NEFA, mM	0.43	0.46	0.53	0.14
BHB, mM	0.87	0.86	0.89	0.08
Glucose, mM	2.90	3.17	2.94	0.15
TAG,†mg/dL	16.7	13.8	11.9	1.9
Hepatic mRNA, fold change				
$ATG3^{\dagger}$	1.0	1.10	1.12	-
$ATG7^{\dagger}$	1.0	0.97	1.10	-
DGAT2 [‡]	1.0	0.85	0.99	-
$MTTP^{+\ddagger}$	1.0	0.98	1.58	-
PLIN2*	1.0	0.66	0.62	-
$TNFlpha^*$	1.0	1.82	1.83	-

Contrasts: *RPC (P<0.05); †RPC (P=0.07); ‡source of RPC (P<0.05).

Key Words: choline, lipoprotein, triacylglycerol